
2025 应用统计模拟试题（回忆版）与参考答案

1 第一题：描述性统计分析

题目描述：为研究美国科技创新公司的市值分布情况，随机抽取了 10 家公司作为样
本。其市值（单位：亿美元）数据如下：0.2, 0.4, 0.8, 1.2, 1.4, 1.8, 2.2, 2.4, 3.0,
3.1

问题：

1. 计算该样本数据的四分位数，并根据结果绘制箱形图。

2. 基于箱形图，请描述这组数据的分布特征。

3. 计算样本均值，并与中位数进行比较，解释两者之间产生差异的原因。

解答：

1. 四分位数计算与箱形图
首先，我们将数据从小到大排序（数据已排序）：0.2, 0.4, 0.8, 1.2, 1.4, 1.8,

2.2, 2.4, 3.0, 3.1

• 中位数 (Q2): 由于有 10 个数据点（偶数），中位数是中间两个值的平均值。

Q2 =
1.4 + 1.8

2
= 1.6

• 下四分位数 (Q1): Q1 是数据前半部分的中位数（0.2, 0.4, 0.8, 1.2, 1.4）。

Q1 = 0.8

• 上四分位数 (Q3): Q3 是数据后半部分的中位数（1.8, 2.2, 2.4, 3.0, 3.1）。

Q3 = 2.4
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• 四分位距 (IQR):
IQR = Q3−Q1 = 2.4− 0.8 = 1.6

2. 数据特征描述

• 分布形状: 数据分布相对对称。中位数（1.6）非常接近均值（1.65），箱体（Q1 到 Q2
和 Q2 到 Q3 的距离）和晶须的长度也大致对称，表明数据没有明显的偏斜。

• 离散程度: 数据的全距为 3.1− 0.2 = 2.9，四分位距为 1.6。数据点分布比较均匀，没
有极端值，整体离散程度适中。

3. 均值与中位数的差异分析

• 均值 (Average) 计算:

x̄ =
0.2 + 0.4 + 0.8 + 1.2 + 1.4 + 1.8 + 2.2 + 2.4 + 3.0 + 3.1

10
=

16.5

10
= 1.65

• 差异比较与原因:

– 差异: 样本均值 1.65 与中位数 1.6 非常接近，差异很小。

– 原因: 这种微小差异的原因在于数据分布的高度对称性和无异常值。均值和中位
数都是衡量数据中心趋势的指标。当数据分布对称时，这两个指标的值会非常

接近。与之前的偏态数据不同，这里没有极端值来” 拉动” 均值，因此均值和中
位数都能很好地代表数据的中心点。

(AI 生成部分答案仅供参考，建议参考书本，并且不保证数据与原卷一致:)

2 第二题：置信区间与检验方法

题目描述：假设一个随机变量 X 从一个正态分布 N(µ, σ2) 中抽样，其中总体均值 µ

和方差 σ2 均未知。设定的置信水平为 90%。
问题：

1. 在 σ2 未知的情况下，作 T 检验，写出置信区间。请问置信水平 90% 是否意味着真
值落入置信区间的概率为 90%？

2. 假设现在总体标准差 σ 已知，作 Z 检验，写出置信区间，并对比 1）中的结果
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3. 根据 1），2）说明 T 检验和 Z 检验的应用场景。

解答：

1. T 检验与置信水平的解释

• 检验方法与置信区间: 当总体方差 σ2 未知时，我们必须用样本标准差 s 来估计它。

此时，应当使用 T 分布来构造均值的置信区间。设样本大小为 n，样本均值为 x̄，样

本标准差为 s。则均值 µ 的 90% 置信区间表达式为：(
x̄− tα/2,n−1

s√
n
, x̄+ tα/2,n−1

s√
n

)
其中：

– α = 1− 0.90 = 0.10，所以 α/2 = 0.05。

– t0.05,n−1 是自由度为 n− 1 的 t 分布上侧 5% 的分位数。

• 置信水平 90% 的含义: “置信水平为 90%” 并不意味着总体真值 µ 有 90% 的概率落
入某一个具体的、已计算出的置信区间内。正确的解释是：如果我们以相同的方式，

从同一个总体中重复抽取无数次样本，并为每一次抽样都构造一个 90% 的置信区间，
那么在这些无限多的置信区间中，大约有 90% 的区间会包含总体的真实均值 µ。对

于我们计算出的任何一个特定区间，µ 要么在其中，要么不在，不存在概率问题。

2. Z 检验与结果对比

• 检验方法与置信区间: 当总体标准差 σ 已知时，我们应当使用 Z 分布（正态分布）来
构造均值的置信区间。其 90% 置信区间的表达式为：(

x̄− zα/2
σ√
n
, x̄+ zα/2

σ√
n

)
其中，zα/2 = z0.05 ≈ 1.645。

• 与 T 区间的对比:

1. 分布基础: Z 区间基于正态分布，而 T 分布的尾部比正态分布更” 厚”，这意味
着在相同的置信水平下，T 分布的临界值 tα/2,n−1 通常大于正态分布的临界值

zα/2。

2. 区间宽度: 因此，假设样本标准差 s 恰好等于总体标准差 σ，T 区间通常会比 Z
区间更宽。这种” 增宽” 是为了弥补使用样本 s 估计总体 σ 所带来的不确定性。

当样本量 n足够大时（通常认为 n > 30），T分布会非常接近正态分布，tα/2,n−1

会趋近于 zα/2，两个区间的宽度差异会变小。
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3. T 检验与 Z 检验的应用场景

• Z 检验 (Z-test):

– 核心前提: 总体方差 σ2 已知。

– 应用场景: 主要用于理论教学或某些已知总体参数的特定工业流程中。在实际研
究中，总体方差通常是未知的，因此 Z 检验的应用相对较少。此外，当样本量
n 非常大时（例如 n > 100），可以用 Z 检验作为 T 检验的近似。

• T 检验 (T-test):

– 核心前提: 总体方差 σ2 未知，需要用样本方差 s2 来估计。

– 应用场景: 这是现实世界中绝大多数关于均值推断的场景。无论是进行假设检验
还是构造置信区间，只要总体方差是未知的，就应该使用 T 检验。它是统计推
断中应用最广泛的工具之一。

(AI 生成部分答案仅供参考，建议参考书本，并且不保证数据与原卷一致:)

3 第三题：假设检验

题目描述: 对一个服从正态分布的随机变量 X 进行假设检验。已知信息如下：

• 总体方差 σ2 = 25 (即 σ = 5)。

• 原假设 H0 : µ = 2。

• 备择假设 H1 : µ ̸= 2 (双边检验)。

• 显著性水平 α = 0.05 (对应置信水平 95%)。

• 从总体中抽取一个样本，样本量 n = 25，计算得到样本均值 x̄ = 2.5。

问题:

1. 计算在原假设 H0 为真时的拒绝域，并绘制该条件下的零分布图。

2. 计算检验统计量 z-value，并将其位置在 1）的零分布图中标出。
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3. 计算本次检验的 p-value，并依据它判断是否应拒绝原假设 H0。

解答:
1. 拒绝域与零分布

• 零分布 (Null Distribution): 在原假设 H0 : µ = 2 为真的前提下，样本均值 x̄ 的抽

样分布服从正态分布。其均值为 µ0 = 2，标准差（即标准误）为 σ√
n
= 5√

25
= 1。所

以，零分布为 N(2, 12)。

• 拒绝域 (Rejection Region): 这是一个双边检验，显著性水平 α = 0.05，所以每侧

的拒绝区域面积为 α/2 = 0.025。我们需要找到标准正态分布两侧的临界值 ±zα/2。

z0.025 = 1.96

拒绝域是检验统计量 Z 的值大于 1.96 或小于-1.96 的区域。即：

Z < −1.96 或 Z > 1.96

• 零分布示意图: 可以绘制一个以 2 为中心，标准差为 1 的正态分布曲线。在横轴上，
标出拒绝域的边界点，即 2 − 1.96 × 1 = 0.04 和 2 + 1.96 × 1 = 3.96。任何落在

(−∞, 0.04] ∪ [3.96,+∞) 区间的 x̄ 值都会导致拒绝 H0。

2. Z-Value 计算

• 计算检验统计量 (z-value):

z =
x̄− µ0

σ/
√
n

=
2.5− 2

5/
√
25

=
0.5

1
= 0.5

• 标注: 在上述的零分布图（N(2, 12)）上，样本均值 x̄ = 2.5 位于中心值 2 的右侧。对
应的 z-value 是 0.5，这个值明显位于接受域 (−1.96, 1.96) 之内，远离拒绝域。

3. P-Value 计算

• 计算 p-value: p-value是在原假设为真的情况下，观察到当前样本结果（或更极端结
果）的概率。对于双边检验，我们需要计算 |Z| > 0.5 的概率。

p-value = P (|Z| > 0.5) = P (Z > 0.5) + P (Z < −0.5)

由于正态分布的对称性，这等于：

p-value = 2× P (Z > 0.5)

查标准正态分布表或使用计算器可得 P (Z > 0.5) = 1 − P (Z ≤ 0.5) = 1 − 0.6915 =

0.3085。

p-value = 2× 0.3085 = 0.617
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• 决策: 我们比较 p-value 和显著性水平 α。

0.617(p-value) > 0.05(α)

因为 p-value远大于显著性水平，我们没有足够的证据拒绝原假设 H0。结论: 统计证
据不足以认为总体均值不等于 2。

4 第四题：参数估计

题目描述: 一个随机变量 X 的概率密度函数 (PDF) 为：

f(x;λ) = λ2xe−λx, for x > 0

X1, X2, . . . , Xn 是从该分布中抽取的一组独立同分布的样本。

问题:

1. 求参数 λ 的矩估计量 (Method of Moments Estimator)。

2. 求参数 λ 的最大似然估计量 (Maximum Likelihood Estimator)。

解答:
1. 矩估计量 (MOM)
矩估计法的思想是用样本矩来估计总体矩。我们使用一阶矩（均值）。

• 第一步：计算总体均值 E[X] 该概率密度函数是伽马分布 Γ(k, θ) 的一个特例，其中

参数 k = 2，θ = 1/λ。伽马分布的均值为 E[X] = kθ。因此，

E[X] = 2 · 1
λ
=

2

λ

（也可以通过积分
∫∞
0

x · f(x)dx 直接计算得到）

• 第二步：令总体均值等于样本均值样本均值为 X̄ = 1
n

∑n
i=1 Xi。令 E[X] = X̄：

2

λ
= X̄

• 第三步：解出 λ 的估计量 λ 的矩估计量 λ̂MOM 为：

λ̂MOM =
2

X̄
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2. 最大似然估计量 (MLE)
最大似然估计法的思想是找到一个参数值，使得当前观测到的这组样本出现的概率（似

然）最大。

• 第一步：写出似然函数 L(λ) 似然函数是所有样本点概率密度的连乘积：

L(λ; x1, . . . , xn) =
n∏

i=1

f(xi;λ) =
n∏

i=1

(λ2xie
−λxi)

L(λ) = (λ2)n

(
n∏

i=1

xi

)
e−λ

∑n
i=1 xi = λ2n

(
n∏

i=1

xi

)
e−λnX̄

• 第二步：取对数，得到对数似然函数 lnL(λ) 取对数可以简化计算：

lnL(λ) = ln(λ2n) + ln
(

n∏
i=1

xi

)
+ ln(e−λnX̄)

lnL(λ) = 2n ln(λ) +
n∑

i=1

ln(xi)− λnX̄

• 第三步：对 λ 求导，并令其为 0

d

dλ
lnL(λ) =

2n

λ
− nX̄

令导数为 0：
2n

λ
− nX̄ = 0

• 第四步：解出 λ 的估计量
2n

λ
= nX̄

λ̂MLE =
2n

nX̄
=

2

X̄

在此问题中，λ 的矩估计量与最大似然估计量相同。
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5 第五题：构造统计分布

题目描述: 我们有两组来自正态分布的独立随机样本：

• 样本 X1, . . . , Xn 来自总体 N(µ1, σ
2
1)。

• 样本 Y1, . . . , Ym 来自总体 N(µ2, σ
2
2)。

问题:

1. 假设 µ1 = µ2 = µ，找到两个统计量 T1 和 T2，使它们都服从 t 分布且相互独立。解
释其原理。

2. 假设 σ2
1 = σ2

2 = σ2，定义一个统计量 T3，使其服从 F 分布，并说明其自由度。

3. 定义新统计量 T4 = 1/T3，请问 T4 服从什么分布？

解答:
1. 构造独立的 t 分布统计量

• 构造统计量: 我们可以分别基于两个独立的样本来构造两个 t 统计量：

– T1(X1, . . . , Xn, Y1, . . . , Ym) =
X̄−µ

SX/
√
n
，其中 X̄ 和 SX 是 X 样本的均值和标准差。

– T2(X1, . . . , Xn, Y1, . . . , Ym) =
Ȳ−µ

SY /
√
m
，其中 Ȳ 和 SY 是 Y 样本的均值和标准差。

• 服从 t 分布的原因: t 分布由一个标准正态分布的随机变量除以一个独立的、除以其
自由度的卡方分布随机变量的平方根构成。

– 对于 T1：
X̄−µ
σ1/

√
n
服从标准正态分布 N(0, 1)。(n−1)S2

X

σ2
1
服从自由度为 n− 1 的卡方

分布 χ2
n−1。在正态总体中，样本均值和样本方差是独立的。因此，T1 的构造符

合 t 分布的定义，服从自由度为 n− 1 的 t 分布。

– 同理，T2 也符合 t 分布的定义，服从自由度为 m− 1 的 t 分布。

• 相互独立的原因: 统计量 T1 仅是样本 X 的函数。统计量 T2 仅是样本 Y 的函数。由
于原始样本 X和样本 Y是相互独立的，任何只依赖于各自样本的函数（如此处的 T1

和 T2）也必然是相互独立的。

2. 构造 F 分布统计量
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• 定义统计量: F 分布由两个独立的、各自除以其自由度的卡方分布随机变量的比值构
成。在 σ2

1 = σ2
2 = σ2 的前提下，样本方差的比值可以构造 F 统计量。

T3(X1, . . . , Xn, Y1, . . . , Ym) =
S2
X

S2
Y

• 原理与自由度: 我们知道 (n−1)S2
X

σ2 ∼ χ2
n−1 和

(m−1)S2
Y

σ2 ∼ χ2
m−1。根据 F 分布的定义：

F =
χ2
df1/df1

χ2
df2/df2

=

(
(n−1)S2

X

σ2

)
/(n− 1)(

(m−1)S2
Y

σ2

)
/(m− 1)

=
S2
X/σ

2

S2
Y /σ

2
=

S2
X

S2
Y

因此，统计量 T3 服从 F 分布。

– 分子自由度 df1 = n− 1。

– 分母自由度 df2 = m− 1。

3. T4 的分布
根据 F 分布的一个重要性质，如果一个随机变量 F 服从自由度为 (d1, d2) 的 F 分布，

那么它的倒数 1/F 将服从自由度为 (d2, d1) 的 F 分布。
在问题 2 中，我们已经知道：

T3 =
S2
X

S2
Y

∼ F (n− 1,m− 1)

因此，新的统计量 T4 为：

T4 =
1

T3

=
1

S2
X/S

2
Y

=
S2
Y

S2
X

我们可以通过 F 分布的定义来验证这一点：

T4 =
S2
Y

S2
X

=

(
(m−1)S2

Y

σ2

)
/(m− 1)(

(n−1)S2
X

σ2

)
/(n− 1)

分子的表达式是自由度为 m− 1 的卡方变量除以其自由度，分母是自由度为 n− 1 的卡方

变量除以其自由度。因此，T4 服从 F 分布，其自由度与 T3 的自由度正好相反：

• 分子自由度 df1 = m− 1。

• 分母自由度 df2 = n− 1。

所以，T4 ∼ F (m− 1, n− 1)。
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6 第六题：无截距项的最小二乘法

题目描述: 给定一个数据集 {(xi, yi)|i = 1, . . . , n}。我们使用一个无截距项的简单线性
回归模型来拟合数据：

Yi = βxi + ϵi

其中，误差项 ϵi 相互独立，且服从均值为 0、方差为 σ2 的正态分布，即 ϵi ∼ N(0, σ2)。

问题:

1. 求解斜率参数 β 的最小二乘估计量 β̂。

2. 说明 β̂ 服从什么分布。

3. 说明残差平方和 (RSS) 服从什么分布。

解答:
1. 求解最小二乘估计量 β̂

最小二乘法的目标是最小化残差平方和 (RSS)。

RSS(β) =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − βxi)
2

为了找到使 RSS 最小的 β，我们对 β 求导并令其等于 0。

d(RSS)

dβ
=

n∑
i=1

2(yi − βxi)(−xi) = −2
n∑

i=1

(xiyi − βx2
i )

令导数为 0：
−2
(∑

xiyi − β
∑

x2
i

)
= 0∑

xiyi = β
∑

x2
i

解出 β 的最小二乘估计量 β̂：

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

2. β̂ 的分布

β̂ 是观测值 yi 的线性组合，其中 yi 是正态随机变量。正态变量的线性组合仍然是正

态变量，因此 β̂ 服从正态分布。我们可以进一步确定其均值和方差：

• 均值 E[β̂]:

E[β̂] = E

[∑
xiyi∑
x2
i

]
=

∑
xiE[yi]∑
x2
i
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因为 E[yi] = E[βxi + ϵi] = βxi，所以：

E[β̂] =

∑
xi(βxi)∑

x2
i

=
β
∑

x2
i∑

x2
i

= β

这是一个无偏估计。

• 方差 Var(β̂):

Var(β̂) = Var
(∑

xiyi∑
x2
i

)
=

1

(
∑

x2
i )

2
Var

(∑
xiyi

)
因为 yi 相互独立，所以 Var(

∑
aiYi) =

∑
a2i Var(Yi)。

Var(β̂) = 1

(
∑

x2
i )

2

∑
x2
i Var(yi)

因为 Var(yi) = Var(βxi + ϵi) = Var(ϵi) = σ2，所以：

Var(β̂) =
∑

x2
iσ

2

(
∑

x2
i )

2
=

σ2∑
x2
i

综上所述，β̂ 服从正态分布：

β̂ ∼ N

(
β,

σ2∑n
i=1 x

2
i

)
3. 残差平方和 (RSS) 的分布
我们可以利用第二问中关于 β̂ 分布的结果，通过对总误差平方和进行分解来推导 RSS

的分布。

• 第一步：分解总误差平方和

我们从真实误差项 ϵi = yi−βxi 的平方和入手。这是一个服从 σ2χ2
n 分布的随机变量。

n∑
i=1

ϵ2i =
n∑

i=1

(yi − βxi)
2

通过在括号内加减 β̂xi，我们可以将其分解：∑
(yi − β̂xi + β̂xi − βxi)

2 =
∑(

(yi − β̂xi) + (β̂ − β)xi

)2
展开平方项：

=
∑

(yi − β̂xi)
2 + 2

∑
(yi − β̂xi)(β̂ − β)xi +

∑
((β̂ − β)xi)

2
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中间的交叉项为 2(β̂−β)
∑

xi(yi− β̂xi)。根据最小二乘法的正规方程 (Normal Equa-
tion)，我们知道

∑
xi(yi − β̂xi) = 0。因此交叉项为 0。

这样，我们就得到了一个关键的分解式：
n∑

i=1

ϵ2i =
n∑

i=1

(yi − β̂xi)
2 + (β̂ − β)2

n∑
i=1

x2
i

写成更简洁的形式： ∑
ϵ2i = RSS + (β̂ − β)2

∑
x2
i

• 第二步：标准化并利用第二问的结果

将上式两边同除以 σ2:
n∑

i=1

(ϵi
σ

)2
=

RSS
σ2

+
(β̂ − β)2

∑
x2
i

σ2

我们逐一分析这三项的分布：

– 左侧项: 因为 ϵi ∼ N(0, σ2)，所以 ϵi/σ ∼ N(0, 1)。左侧是 n 个独立标准正态变
量的平方和，因此

∑
(ϵi/σ)

2 ∼ χ2
n。

– 右侧第二项: 从第二问我们知道，̂β ∼ N(β, σ2∑
x2
i
)。这意味着 β̂−β√

σ2/
∑

x2
i

∼ N(0, 1)。

那么它的平方，即 (β̂−β)2

σ2/
∑

x2
i
=

(β̂−β)2
∑

x2
i

σ2 ，就服从自由度为 1 的卡方分布, χ2
1。

• 第三步：利用矩生成函数 (MGF) 确定 RSS 的分布

我们的分解式现在可以写成：

Qn = Qrss +Q1

其中 Qn ∼ χ2
n, Q1 ∼ χ2

1, 且 Qrss = RSS/σ2。根据科克伦定理，在线性模型中，RSS
与参数估计量 β̂ 是独立的。因此，Qrss 和 Q1 也是独立的。

对于独立的随机变量，其和的矩生成函数等于各自矩生成函数的乘积：

MQn(t) = MQrss(t) ·MQ1(t)

我们知道卡方分布 χ2
k 的 MGF 是 (1− 2t)−k/2。代入可得：

(1− 2t)−n/2 = MQrss(t) · (1− 2t)−1/2

求解 MQrss(t)：

MQrss(t) =
(1− 2t)−n/2

(1− 2t)−1/2
= (1− 2t)−(n−1)/2

这个结果正是自由度为 n− 1 的卡方分布的矩生成函数。
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• 结论

因此，我们证明了：
RSS
σ2

∼ χ2
n−1

声明：本文档中的部分解答由 AI 生成，仅供学习和参考使用。
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